Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha)

Author:

Ge Deyan1,Yao Lu2,Xia Lin1,Zhang Zhaoqun3,Yang Qisen14

Affiliation:

1. 1 Key Laboratory of Zoological Systematics and Evolution Institute of Zoology, Chinese Academy of Sciences Beichen West Road, Chaoyang District Beijing 100101 China

2. 2 Department of Anthropology The Field Museum Chicago, Illinois 60605 USA

3. 3 Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 China

4. 4 Email: yangqs@ioz.ac.cn

Abstract

The intergeneric phylogeny of Lagomorpha had been controversial for a long time before a robust phylogeny was reconstructed based on seven nuclear and mitochondrial DNA sequences. However, skull morphology of several endemic genera remained poorly understood. The morphology of supraorbital processes in Lagomorpha is normally used as a diagnostic characteristic in taxonomy, but whether shape change of this structure parallels its genetic divergence has not been investigated. In this study, we conducted a comparative analysis of the skull morphology of all 12 extant genera using geometric morphometrics. These results indicated that no significant phylogenetic signal is observed in the shape change of the dorsal and ventral views of the cranium as well as in the lateral view of the mandible. The supraorbital processes also show insignificant phylogenetic signal in shape change. Similarly, mapping the centroid size (averaged by genus) of these datasets onto the phylogeny also showed insignificant phylogenetic signal. Aside from homoplasy caused by convergent evolution of skull shape, the massive extinction of lagomorphs after the late Miocene is proposed as one of the main causes for diluting phylogenetic signals in their morphological evolution. Acknowledging the loss of phylogenetic signals in skull shape and supraorbital processes of extant genera sheds new light on the long-standing difficulties for understanding higher-level systematics in Lagomorpha.

Publisher

Brill

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3