Airfoil Optimization with Metaheuristic Artificial Bee Colony Algorithm Supported by Neural Network Trained Using Nasa-Foilsim Data

Author:

DOĞAN Şeyma1,ALTIN Cemil2

Affiliation:

1. BOZOK ÜNİVERSİTESİ

2. BOZOK UNIVERSITY

Abstract

In this study, the wing profile, which is difficult to calculate and determine, has been optimized with the help of Foilsim data and optimization algorithms. Foilsim data provided by NASA (National Aeronautics and Space Administration) and used by many researchers, especially in developing model airplanes, has been provided to use in aircraft wing shape optimization. Although Foilsim is a very useful simulation program for designers, it cannot be used effectively in optimization processes due to its web environment. Lift coefficient is needed for Lift equation in airfoil shape optimization. Lift coefficient depends on angle, camber, and thickness of airfoil Calculation of Lift coefficient is difficult and needs heavy mathematical equations or real experiments. By using Foilsim data and optimization algorithm (Artificial Neural Networks: ANN, Artificial Bee Colony: ABC), wing angle, camber and thickness values, which are difficult to determine and calculate, were estimated and comparative experiments of the values were made. (Fixed Lift, Fixed Speed, Fixed Wing Area). Experimental results have shown that it is a useful study for airfoil shape optimization. In short, in this study, by using the Foilsim data and the optimization algorithm to provide the lifting force determined by the designer, the most suitable angle, camber, thickness values of the wing, which are difficult to determine and calculate, are determined to enable the production of efficient aircraft. The user enters the desired lift value into the ABC optimization algorithm and finds the required wing properties for the desired lift value.

Publisher

Journal of Aviation

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference28 articles.

1. Akay, B. (2009). Nümerik optimizasyon problemlerinde yapay arı kolonisi (artıfıcıal bee colony) algoritmasının performans analizi. [Doctoral dissertation, Erciyes University]. Yök Açık Bilim. https://acikbilim.yok.gov.tr/handle/20.500.12812/499805.

2. Du, X., He, P. ve Martins, J. R. R. A. (2021). Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling. Aerospace Science and Technology, 113, 106701. doi:10.1016/J.AST.2021.106701.

3. Elmas, Ç. (2018), Yapay Zeka Uygulamaları, (Birinci Basım), 1-58, Ankara: Seçkin Yayınları.

4. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep learning(First Edition). MIT press,96-152.

5. Gülcü, A., & Kuzucuoğlu, D. (2006). Yapay zeka tekniklerinden genetik algoritma ve tabu arama yöntemlerinin eğitim kurumlarının haftalık ders programlarının hazırlanmasında kullanımı [Master dissertation, University of Marmara]. Yök Açık Bilim. https://acikbilim.yok.gov.tr/handle/20.500.12812/226432.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3