Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight

Author:

OKTAY Tuğrul1,ÖZEN Enes2

Affiliation:

1. ERCIYES UNIVERSITY

2. HASAN KALYONCU ÜNİVERSİTESİ

Abstract

Unmanned aerial vehicles are aerial robots controlled by commands sent from the ground control station. While fixed-wing aircraft have the advantages of long range and high altitude, they need a runway to create sufficient lift on the wings. The advantage of Rotary Wing Aircraft is that it does not need a runway, it can perform vertical take-off and landing. It can hover. Thanks to these features, it is used in tasks such as surveillance, search and rescue, and reconnaissance. In areas with chemical wastes or in closed environments without risking the human element; Desired tasks can be performed in places such as sewers, caves, and collapsed houses. For this, there is a flight control computer and software on the aircraft. Rotary-wing aircraft are more unstable than fixed-wing aircraft. Thanks to the flight controller, its stability and controllability are increased. In this study, a quadcopter, multicopter aircraft structure is used. The variation of the angle between the arms of a quadcopter aircraft and its effects on forward and sideways flight are examined. It is required that the aircraft be symmetrical in the longitudinal and lateral axis in order to cope with the disturbances to which it is exposed in external environments . In closed environments, atmospheric events are replaced by obstacles. One of the desirable features of the aircraft is that it can pass through narrow places. For this, the aircraft must perform a shape change. The change in structure will cause it to change in the dynamics equations, causing the rotors to react differently during linear and rotational movements of the aircraft. This study focuses on the system design and control of the aircraft. The geometric features obtained from the aircraft designed in the CATIA program were used in the creation of the mathematical model. The obtained values were created using the MATLAB Simulink program to create a digital twin of the aircraft. When the intersection angle between the arms is 90 degrees, the settling time of the 2-degree pitch angle is 7.48 seconds, and when it is 45 degrees, it is 10.3 seconds.

Publisher

Journal of Aviation

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3