The Efficiency of Transfer Learning and Data Augmentation in Lemon Leaf Image Classification

Author:

SAYGILI Ahmet1ORCID

Affiliation:

1. Namık Kemal Üniversitesi

Abstract

Leaf diseases in trees and plants are important factors that directly affect the yield of agricultural products. This problem may cause a decrease in the production capacity and profitability of farmers. For this reason, computer-aided detection and classification systems are needed to accurately detect plant diseases. In recent years, learning algorithms and image-processing techniques have been used effectively in the agricultural sector. In this study, the efficiency of transfer learning and data augmentation methods on a dataset consisting of lemon leaf images is examined and the classification of diseased and healthy lemon leaf images is performed. In our study, VGG16, ResNet50, and DenseNet201 transfer learning methods were applied both with and without data increment, and the effect of data augmentation on performance was evaluated. Among the deep transfer learning methods used, DenseNet201 gave the highest accuracy rate with 98.29%. This study shows that transfer learning methods can effectively distinguish between diseased and healthy lemon leaves. It has also been observed that data augmentation does not always provide performance improvement. In future studies, it is predicted that it will be appropriate to evaluate the effect of data augmentation more effectively by applying deep transfer learning methods to plants with different class numbers.

Publisher

Namik Kemal University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3