Exposure of Pinus elliottii wood treated with titanium dioxide to the fungus Postia placenta and photodegradation

Author:

Zanatta PaulaORCID,Mattoso TalineORCID,Gallio EzequielORCID,Lazarotto MaríliaORCID,Gatto Darci AlbertoORCID,Da Cunha Alexsandro BayestorffORCID,Beltrame RafaelORCID

Abstract

It was impregnated commercial titanium dioxide into Pinus elliottii wood, aiming to increase its durability against the attack of brown rot fungus Postia placenta and photodegradation caused by ultraviolet radiation. The samples were put under 8 bar pressure for 3 hours at different concentrations of TiO2 (0.5%, 0.25%, 0.124% and 0%-control). To evaluate the effect of the fungus on the wood, the test was carried out according to ASTM D2017-05 and UNE-EN 113:1996 with modifications. The photodegradation was performed by exposing a tangential section to ultraviolet radiation for 400 hours, and the colorimetric parameters were periodically evaluated. Statistically, the treatments with TiO2 did not differ among themselves, but were much lower than the control, showing the effectiveness of this product in protecting the wood against the attacks of degraders. As for the photodegradation, the treated wood remained practically unchanged, differently from the control that had a darkening accelerated mainly in the first 50 hours. With this information, it can be stated that TiO2 treated wood is able to hinder the fungus access to the cell wall, to inhibit its growth and to create a barrier that protects the polymers from photodegradation, increasing its durability and emerging as a potential alternative for wood treatment.

Publisher

Instituto de Ecologia, A.C.

Subject

Forestry

Reference29 articles.

1. American Society for Testing and Materials [ASTM] (2005). ASTM D2017-05 Standard method for accelerated laboratory test of natural decay resistance for woods.

2. Ayadi, N., Lejeune, F., Charrier, F., Charrier, B., & Merlin, A. (2003). Color stability of heat-treated wood during artificial weathering. Holz als Roh-und Werkstoff, 61(3), 221-226. https://doi.org/10.1007/s00107-003-0389-2

3. Blanchard, V., & Blanchet, P. (2011). Color stability for wood products during use: Effects of inorganic nanoparticles. BioResources, 6(2), 1219-1229.

4. Cai, X. (2007). Wood modifications for valued-added applications using nanotechnology-based approaches [Doctoral dissertation, Université Laval].

5. Camargos, J. (1999). Colorimetria aplicada na elaboração de uma tabela de cores para madeiras tropicais [Doctoral dissertation, Universidade de Brasília].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanotechnology in wood science: Innovations and applications;International Journal of Biological Macromolecules;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3