Author:
González González Mario Felipe,Zamora Natera Juan Francisco,Vioque Peña Javier,Zañudo Hernández Julia,Ruiz López Mario Alberto,Ramírez López César Bonifacio
Abstract
Antecedentes y Objetivos: En algunos países, los habitantes de las comunidades rurales complementan su dieta con frutos obtenidos de plantas silvestres, los cuales generalmente carecen de información nutricional y fitoquímica, como ocurre con los frutos de las especies endémicas en México del género Jarilla (Caricaceae). Por lo tanto, el objetivo de esta investigación fue estudiar la composición nutricional de frutos de Jarilla caudata en términos de su análisis químico proximal, contenido de minerales y aminoácidos, así como determinar la presencia de metabolitos secundarios, contenido total de compuestos fenólicos y flavonoides. Métodos: Los frutos se colectaron en el municipio Teocuitatlán de Corona, Jalisco, en julio de 2018 y 2019. Para determinar la composición químico proximal se siguieron los métodos oficiales de análisis de AOAC. El contenido de minerales se determinó por espectrofotometría de absorción atómica y los aminoácidos por cromatografía de líquidos de alta resolución (HPLC). Para el análisis de metabolitos secundarios se utilizaron diversos reactivos, y el contenido de compuestos fenólicos y flavonoides totales se cuantificó por espectrofotometría.Resultados clave: En comparación con otros frutos silvestres de la familia Caricaceae, los resultados indicaron que los frutos de J. caudata representan una buena fuente de carbohidratos y proteínas (35.7 y 18.9 g/100 g respectivamente), así como de algunos minerales (K, P y Ca). Se observó un pobre perfil y contenido de aminoácidos. El promedio de compuestos fenólicos totales fue de 387.5 mg GAE/100 mg, mientras que el de flavonoides totales fue de 56.5 mg QE/100 mg. No se detectaron compuestos considerados tóxicos o antinutricionales como alcaloides y glucósidos cianogénicos.Conclusiones: Durante el verano, los frutos de J. caudata pueden tener un papel importante como complemento alimenticio para los habitantes de la región de Teocuitatlán de Corona, aportando diferentes nutrientes, particularmente carbohidratos y proteínas, así como otros compuestos con efectos favorables para la salud como los polifenoles.
Publisher
Instituto de Ecologia, A.C.
Subject
Plant Science,Ecology, Evolution, Behavior and Systematics
Reference49 articles.
1. Addai, Z. R., A. Abdullah, S. A. Mutalib, K. H. Musa y E. M. A. Douqan. 2013. Antioxidant activity and physicochemical properties of mature papaya fruit (Carica papaya L. cv. Eksotika). Advance Journal of Food Science and Technology 5(7): 859-865. DOI: https://doi.org/10.19026/ajfst.5.3173
2. Agatemor, U. M. M., F. C. N. Okwesili y A. A. Chioma. 2018. Phytochemical and proximate composition of cucumber (Cucumis sativus) fruit from Nsukka, Nigeria. African Journal of Biotechnology 17(38): 1215-1219. DOI: https://doi.org/10.5897/AJB2018.16410
3. Alves, B. S. F., J. B. Pereira Junior, F. I. M. Carvalho, H. A. Dantas Filho y K. G. Fernandes Dantas. 2019. Mineral composition of Amazonian fruits by flame atomic absorption spectrometry using multivariate analysis. Biological Trace Element Research 189(1): 259-266. DOI: https://doi.org/10.1007/s12011-018-1451-6
4. AOAC. 1990. Association of Official Analytical Chemists AOAC, 15a ed. Association of Official Analytical Chemists. Arlington, USA.
5. AOAC. 2005. Association of Official Analytical Chemists AOAC. 18a ed. Association of Official Analytical Chemists. Gathersburg, MD, USA.