Modeling walkability by remote sensing as latent walking speed extracted from multiple digital trail maps

Author:

Šerić LjiljanaORCID,Tavra MarinaORCID,Racetin IvanORCID,Ivanda AntoniaORCID

Abstract

Coordinating and managing teams searching for missing persons in wilderness areas is challenging. Local terrain characteristics and environmental conditions strongly influence how searchers accomplish their search tasks. When making decisions, searchers consult various maps of the area. In this paper we proposed a methodology for mapping characteristics of the area that influence user behavior when walking the area, and define a walkability model of the terrain. We define walkability as a measure of how fast a person can walk through terrain. The observed walking speed depends on factors such as the fitness and motivation of a person walking through the terrain, as well as on assistive features and the configuration of the terrain. In our method, walkability is predicted only as a feature of terrain configuration. We used singular value decomposition (SVD) to transform datasets to extract latent features of the terrain and users from multiple Global Positioning System (GPS) trails. We define the walkability measure as a latent component of walking speed, which is a function of terrain features. Finally, we use a  polynomial regression algorithm to build a model for predicting terrain walkability based on remote sensing imagery from the Sentinel-2 mission. The application of the proposed model is demonstrated in the Kozjak mountain region in the Republic of Croatia.

Publisher

Journal of Spatial Information Science

Subject

Computers in Earth Sciences,Geography, Planning and Development,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Information Science in 2023;Journal of Spatial Information Science;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3