SIMULATING COOLING STREET STRATEGIES ON URBAN HEAT ISLANDS EFFECTS: AN EMPIRICAL STUDY FOR BLACKTOWN CITY, AUSTRALIA

Author:

Karimipour Hoda,Tam Vivian W. Y.,Burnie Helen,Le Khoa N

Abstract

ABSTRACT Australia has ranked as one of the most vulnerable countries to the effects of climate change. The rising trend of temperature is intensifying the creation and extension of urban heat islands (UHI). This paper investigates different cooling street strategies in line with developing resilient Sydney to the effects of climate change. Two different approaches are investigated including, green canopy and cool pavement. A wide range of impacted parameters is examined including Air Temperature, Surface Temperature, Sensible Heat Flux, Sky View Factor, Human Thermal Comfort, and Mean Radiant Temperature. Also, different surface reactions to the sun and shadow were surveyed to investigate the various materials responses to the different levels of shadow. ENVImet software is adopted to simulate and quantify microclimate processes before and after introducing cooling street strategies. This study demonstrates that replacing asphalt pavement with light concrete pavement reduces surface temperature by up to 20°C. Planting short to medium height trees reduces air temperature by up to 3°C and surface temperature by up to 11°C. Also, human thermal comfort has a direct relationship with the Sky View Factor at daytime. Besides, the study proves that the Mean Radiant Temperature is reduced considerably by both green canopy and light pavement scenarios in the daytime; however, the night time radiant heat does not differ substantially in any of the scenarios. Overall, both proposed initiatives show the positive cooling effects on air, surface, and mean radiant temperature, human thermal comfort, and the heat fluxes in the daytime; however, the cool pavement scenario decreases both daytime and night-time air and surface temperature.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

Reference43 articles.

1. Using rainwater in cooling towers: Design and performance analysis for a petrochemical company;Ana,;Journal of Cleaner Production,2019

2. Australian Bureau of Statistics. ( 2020). National, state and territory population-June 2020. 17 Dec 2020. Retrieved from https://www.abs.gov.au/statistics/people/population/national-state-and-territory-population/jun-2020

3. Bruse, M. ( 2009). ENVI-met 3.1 Manual Contents. Retrieved from http://www.envi-met.info/documents/onlinehelpv3/helpindex.htm. from www.envi-met.comhttp://www.envi-met.info/documents/onlinehelpv3/helpindex.htm

4. Thermal Comfort Indices provided by BioMet 1.5;Bruse,,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3