Recommendations for the Selection, Stabilization, and Compaction of Soil for Rammed Earth Wall Construction

Author:

Burroughs Steve1

Affiliation:

1. Associates Pty. Ltd., 38 Blackman Crescent, Macquarie, ACT 2614, Australia.

Abstract

Rammed earth possesses environmental advantages over most other competing construction materials. However, if it is to be more routinely used in the construction of modern, sustainable buildings, its material properties and production processes must be properly quantified. This paper proposes practical recommendations for soil selection, stabilizer treatment, and on-site compaction for rammed earth, based on a recent set of 219 stabilization experiments. The purpose of the recommendations is to maximize the probability of constructing rammed earth walls that meet or exceed a compressive strength criterion of 2 MPa. The recommendations cover: (1) Quantifying the natural soil properties of linear shrinkage and texture in a staged sequence in order to identify suitable soils to stabilize (and to reject unsuitable soils); (2) Quantifying the amounts of cement and/or lime to be added to the selected soil according to the values of soil properties measured; and (3) Quantifying the forces involved in on-site compaction of stabilized soil (for both manual and pneumatic ramming), and relating these to laboratory-based test standards. Although the recommendations need to be tested and verified/refined using new data, their initial application to rammed earth construction situations in Australia indicates that they have predictive utility. Further research will also indicate the degree of applicability of the recommendations to the production of compressed earth bricks.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3