An Analysis of Variation in the Energy-Related Environmental Impacts of LEED Certified Buildings

Author:

Wedding G. Christopher1,Crawford-Brown Douglas2

Affiliation:

1. Cherokee Investment Services, and Doctoral Candidate, University of North Carolina at Chapel Hill, Department of Environmental Sciences and Engineering, 104 Rosenau Hall, CB# 7431, Chapel Hill 27599-7431, North Carolina, USA. +1 (919) 274 7988, Fax: +1 (919) 966 9920.

2. Institute for the Environment, University of North Carolina at Chapel Hill, 100 Miller Hall, CB# 1105, Chapel Hill, North Carolina, USA 27599-1105. +1 (919) 966 9922, Fax: +1 (919) 966 9920.

Abstract

The US Green Building Council's (USGBC) LEED guidelines have become the dominant third-party certification program for “green” buildings in the US. Given that buildings use 37% of all energy and 68% of all electricity while contributing substantially to air emission, waste generation, and water consumption issues in the US, one of LEED's purposes is to address the environmental impacts of energy use in buildings. This research analyzes (1) how well the LEED guidelines measure these impacts and (2) which parameters create the most variation among these impacts. Environmental impacts here refer to emissions of carbon dioxide, nitrogen oxides, sulfur dioxide, mercury, and particulate matter (PM10); solid waste; nuclear waste; and water consumption. Using data from the US Department of Energy, the National Renewable Energy Laboratory, the US EPA Energy Star program, and the USGBC, among others, models using Monte Carlo analysis were created to simulate the range of impacts of LEED-certified buildings. Various metrics and statistics were calculated to highlight the significance of variation in these impacts. Future research needs and implications of the results for LEED version 3.0 are also discussed.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3