EVALUATION OF SMART BOOSTER FANS AND DAMPERS FOR ADVANCED HVAC SYSTEMS

Author:

Rezanejadzanjani Behdad,O’Brien Paul G.

Abstract

ABSTRACT There is potential to significantly reduce CO2 emissions by increasing the efficiency and reducing the duty cycle of HVAC systems by using smart booster fans and dampers. Smart booster fans fit in the vents within a home, operating quietly on low power (2W) to augment HVAC systems and improve their performance. In this study, a prototype duct system is used to measure and evaluate the ability for smart booster fans and dampers to control airflow to different vents for the purpose of increasing the efficiency of HVAC systems. Four case studies were evaluated: an HVAC system (1) without any fans or dampers, (2) with a fan installed in one vent, but without any dampers, (3) with dampers installed at the vents, but without any fans, and (4) with both fan and dampers installed. The results from both the experimental and numerical evaluation show that the smart booster fan and dampers can significantly improve the airflow at a vent that is underperforming. For example, the airflow at the last vent in a ducting branch was increased from 17 to 37 CFM when a smart booster fan was installed at this vent. Results from the numerical analysis show that for the case of an underperforming vent during the winter season the HVAC running time may be reduced from 24 hr/day to 5.6 hr/day. Furthermore, results from the numerical analysis show the HVAC running time is further reduced to 4.5 hr/day for cases 3 and 4.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

Reference17 articles.

1. Energy Efficiency Indicators Highlights (2017 deition);International Energy Agency,,2017

2. Residential Sector—Energy Use Analysis, Natural Resources Canada, oee.nrcan.gc.ca, 2016, http://bit.ly/2HfKso4, accessed on February 11, 2020.

3. Energy use in Canada: environmental impacts and opportunities in relationship to infrastructure systems;Cuddihy;Can. J. Civ. Eng.,2005

4. Total End-Use Sector—GHG Emissions, Natural Resources Canada, oee.nrcan.gc.ca, 2016, http://bit.ly/2UG4L5T, accessed on February 11, 2020.

5. Energy benchmarking analysis of multi-unit residential buildings (MURBs) in Toronto, Canada;Ghajarkhosravi;J. Build. Eng.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3