CONCEPTUAL DEVELOPMENT OF THE EARTH TUBE COOLING SYSTEM FOR A TALL BUILDING

Author:

Liu Xiangfeng,Xu Miao,Guo Juanli,Zhu Renjie

Abstract

Earth tubes are earth-to-air heat exchangers that are frequently utilized in energy conscious low-rise buildings, but are scarcely reported for tall buildings. The feasibility of applying earth tube cooling to tall buildings in a hot summer and cold winter climate zone was studied in this paper. Firstly, the designed cooling load of a tall building was obtained from the energy simulation using the baseline and the modified models with applicable energy efficiency measures. Based on the load, the required cooling capacity, the overall section area and the effective length of the earth tube system was deduced from the heat transfer and fluid flow calculation analytically. Then the performance of the earth tube system was crosschecked and verified via the Computational Fluid Dynamics (CFD) simulation. In the CFD simulation, earth tubes with different diameters and lengths, as well as a full-scale earth tube model with surrounding soil above the depth of constant temperature, were investigated. The outlet air temperatures of the full-scale models were computed with the consideration of different axial distances between adjacent tubes. Meanwhile, multiple conceptual design schemes and the tunnel construction method for the earth tube system were proposed from the perspective of performance enhancement, constructability, efficiency and economy. It revealed that earth tube systems are conditionally feasible for some tall buildings if their design guidelines for climate, underground spaces, construction method, friction of tube interior surface, optimization of effective length and axial distance, as well as synergy with other energy efficiency measures are followed. Even the cooling capacity of earth tubes degrade with time due to the accumulated heat underground, but in a hot summer and cold winter climate zone it can still possibly produce cooled air for a tall building with a Floor Area Ratio of less than 7 effectively in summer.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3