A COMPARISON OF FOUR DAYLIGHTING METRICS IN ASSESSING THE DAYLIGHTING PERFORMANCE OF THREE SHADING SYSTEMS

Author:

Boubekri Mohamed,Lee Jaewook

Abstract

The assessment of the daylighting performance of a design solution is a complex task due to the changing nature of daylight. A few quantitative metrics are available to designers to assess such a performance, among them are the mean hourly illuminance (MHI), the daylight factor (DF), the daylight autonomy (DA) and the useful daylight illuminance (UDI). Each of these metrics has a purpose, a set of criteria and limitations that affect the outcome of the evaluation. When to use one metric instead of another depends largely on the design goals to be achieved. Using Design Iterate Validate Adapt (DIVA) daylighting simulation program, we set out to examine the performance behavior of these four metrics with the changing dimensions of three shading devices: a horizontal overhang, a horizontal louver system, and a vertical fin system, and compare their performance behavior as the orientation changes of the window to which these devices are attached. The context is a typical classroom of a prototypical elementary school. Our results indicate that not all four metrics behave similarly as we vary the size of each shading device and as orientation changes. The lesson learned is that not all daylighting metrics lead to the same conclusions and that it is important to use the metric that corresponds to the specific goals and objectives of the design and of the daylighting solution. The UDI is the metric that leads to outcomes most different than the other three metrics investigated in this paper.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3