FACTORS AFFECTING VENTILATION, INDOOR-AIR QUALITY AND ACOUSTICAL QUALITY IN ‘GREEN’ AND NON-‘GREEN’ BUILDINGS: A PILOT STUDY

Author:

Khaleghi Alireza1,Bartlett Karen2,Hodgson Murray3

Affiliation:

1. Department of Mechanical Engineering, University of British Columbia, 6250 Applied Sciences Lane, Vancouver, BC, Canada V6T1Z3. Tel: 1-(604)-696-8129.

2. Professor, School of Population and Public Health, University of British Columbia, 3rd Floor, 2206 East Mall, Vancouver, BC, Canada V6T1Z3. Tel: 1-(604)-822-9573..

3. Professor, School of Population and Public Health (and Department of Mechanical Engineering), University of British Columbia, 3rd Floor, 2206 East Mall, Vancouver, BC, Canada V6T1Z3. Tel: 1-(604)-822-3073.[Corresponding author].

Abstract

This paper discusses a pilot project involving the direct monitoring of ventilation, indoor-air quality and the acoustical conditions in selected nominally ‘green’ and non-‘green’ buildings located on a university campus. The objectives were to measure parameters quantifying these three aspects of indoor environmental quality, determine the relationships between them and the building-design concepts, and evaluate the implications of the results for ventilation-system design, especially in ‘green’ buildings. Measurements were made in rooms, with and without acoustical treatment, in buildings with natural ventilation or mechanical (displacement and/or mixed-flow) ventilation systems. Measurements were made of ventilation rates (air changes per hour), indoor air quality (respirable-fibre, total-VOC and ultrafine-particulate concentrations), and the acoustical conditions (noise levels and reverberation times). Correlations between the environmental results, the building concept, the ventilation concept and the building window status were explored. In rooms with natural ventilation, low-frequency noise and total sound-pressure levels were lower; however, the rooms had higher ultrafine-particulate counts and lower ventilation rates. Rooms with mechanical ventilation had higher low-frequency and total sound-pressure levels, higher ventilation rates and fibre concentrations, but lower concentrations of ultrafine particulates. It was concluded that, in general, mechanical ventilation can provide better indoor air-quality, but that HVAC noise is an issue if the system is not properly designed. In ‘green’ buildings, noise levels were acceptable when the windows were closed, but increasing the ventilation rate by opening the windows resulted in higher noise levels. The results suggest that the acceptability of environmental factors in buildings depends on the degree of compliance of the design and its implementation with standards and design guidelines (i.e. for ventilation, air quality, thermal comfort, etc.), whether the original design concept is ‘green’ or non-‘green’.

Publisher

College Publishing

Subject

General Environmental Science,Geography, Planning and Development,Civil and Structural Engineering,Building and Construction,Architecture,Environmental Engineering,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Public Health, Environmental and Occupational Health

Reference12 articles.

1. American Conference of Governmental Industrial Hygienists

2. Refrigeration and Air-Conditioning Engineers

3. Bearg 1993. Bearg, D. Indoor Air Quality and HVAC Systems, pp114-119. Lewis Publishers, Boca Raton, FL, 1993.

4. Refrigeration and Air-Conditioning Engineers

5. Influence of occupants' knowledge on comfort expectations and behaviour

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3