Adipose-Derived Stem Cells and Tacrolimus Improve Nerve Regeneration in a Rat Sciatic Nerve Defect Model

Author:

Panagopoulos Georgios N.,Megaloikonomos Panayiotis D.,Mitsiokapa Evanthia A.,Bami Myrto,Agrogiannis Georgios,Johnson Elizabeth O.,Soucacos Panayotis N.,Papagelopoulos Panayiotis J.,Mavrogenis Andreas F.

Abstract

This study compared the effect of undifferentiated adipose-derived stem cells (ADSCs) vs tacrolimus (FK506) in peripheral nerve regeneration in a rat sciatic nerve complete transection model. Forty Wistar rats were equally distributed in four groups. In the SHAM surgery group, the sciatic nerve was exposed and no further intervention was done. In the conduit-alone group (the SLN group), a 10-mm nerve gap was created and bridged with a fibrin conduit filled in with normal saline. In the FK506 group, the fibrin conduit was injected with soluble FK506. In the ADSC group, the conduit was impregnated with undifferentiated ADSCs. Nerve regeneration was assessed by means of walking track analysis, electromyography, and neurohistomorphometry. Clinically and microscopically, nerve regeneration was achieved in all groups at 12 weeks. Walking track analysis confirmed functional recovery in the FK506 and ADSC groups, but there was no difference between them. Recovery in function was also achieved in the SLN group, but it was inferior ( P <.05). Electromyography demonstrated superior nerve regeneration in the FK506 and ADSC groups compared with the SLN group ( P <.05), with no difference between the FK506 and ADSC groups. Similarly, histology showed no difference between the FK506 and ADSC groups, although both outperformed the SLN group ( P <.05). No complications were observed. Successful peripheral nerve regeneration can be accomplished after a 10-mm nerve defect treated with nerve conduits. Superior nerve regeneration may be expected when the conduits are loaded with undifferentiated ADSCs or FK506, with similar outcomes for ADSCs and FK506. [ Orthopedics . 2023;46(6):e353–e361.]

Publisher

SLACK, Inc.

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3