Diffusion Depth and Efficacy of Different Infiltration Times for Rose Bengal/Green Light Corneal Cross-linking in Rabbit Eyes

Author:

Gao Rongrong,Chen Ming,Chen Xueyang,Liu Xinyu,Jiang Qingqing,Meek Keith M.,Wang Qinmei,Chen Shihao,Huang Jinhai

Abstract

Purpose: To explore the diffusion depth and green light corneal cross-linking efficacy of different rose bengal (Rb) infiltration times in rabbit eyes. Methods: Twenty-eight fresh rabbit eyes were deepithelialized and infiltrated in 0.1% Rb solution for 2 to 30 minutes. Corneal frozen sections were cut and Rb diffusion depth was observed under the confocal microscope. A further 36 rabbits were randomly divided into eight groups according to the type of treatment (control, Rb infiltration only without irradiation, rose bengal/green light [RGX] for different infiltration times, or riboflavin/ultraviolet radiation [UVX]). The corneas' resistance to keratolysis and biomechanical properties were measured after treatment. Results: After 2, 10, 20, and 30 minutes of infiltration, Rb penetration depths in the corneal stroma were 100, 150, 200, and 270 µm, respectively. The times for complete digestion of the RGX 10 minutes (14.0 ± 1.4 hours), RGX 20 minutes (18.8 ± 1.1 hours), and UVX (51.2 ± 7.2 hours) groups were statistically greater than that of the control group (7.2 ± 1.1 hours). At 10% extension, the Young's modulus of the RGX 20 minutes (36.59 ± 4.90 MPa) and UVX (40.89 ± 2.57 MPa) groups was statistically greater than that of the control group (21.76 ± 5.69 MPa). Conclusions: The diffusion depth of Rb in corneal stroma increased by prolonging the infiltration time. The longer the infiltration time, the better the RGX effect. RGX for 20 minutes showed the best cross-linking efficacy among all RGX groups, albeit not as good as UVX. [ J Refract Surg . 2023;39(9):620–626.]

Publisher

SLACK, Inc.

Subject

Ophthalmology,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3