Intracorneal Ring Segment Implantation Results in Corneal Mechanical Strengthening Visualized With Optical Coherence Elastography

Author:

Torres-Netto Emilio A.,Hafezi Farhad,Kling Sabine

Abstract

PURPOSE: To quantify the mechanical impact of intracorneal ring segment (ICRS) implantation of different dimensions in an ex vivo eye model. METHODS: A total of 30 enucleated porcine eyes were assigned to ICRS implantation (thickness: 300 µm, angle: 120°, 210°, or 325°), tunnel creation only, or virgin control groups. For mechanical evaluation, each globe was mounted on a customized holder and intraocular pressure (IOP) was increased in steps of 0.5 mm Hg from 15 to 17 mm Hg, simulating physiologic diurnal IOP fluctuations. At each step, an optical coherence tomography volume scan was recorded. Deformations between subsequent scans and the locally induced axial strains were analyzed using a vector-based phase difference method. The effective E-modulus was derived from the overall induced strain as a measure of global mechanical impact. RESULTS: ICRS implantation increased the effective E-modulus from 146 and 163 kPa in virgin and tunnel-only eyes to 149, 192, and 330 kPa in eyes that received a 5-mm optical zone ICRS with 120°, 210°, and 325° arc length, respectively; and to 209 kPa in a 6-mm optical zone ICRS with 325° arc length. The most consistent effect was a shift toward positive strains in the posterior stroma by 0.1% to 0.46% (factor 1.15 to 2.15) after ICRS surgery. CONCLUSIONS: ICRS implantation reduces the overall tissue strain under the load of the IOP and provokes posterior tissue relaxation. This effect is more prominent the longer the arc length and the smaller the optical zone of the ICRS is. ICRS have not only a geometrical, but also a mechanical impact on corneal tissue. This behavior might have clinical implications when ICRS implantation is performed in biomechanically weakened keratoconic corneas. [ J Refract Surg . 2022;38(7):459–464.]

Publisher

SLACK, Inc.

Subject

Ophthalmology,Surgery

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3