Author:
Wang Mengyi,Shi Ce,Zhou Yuheng,Ye Yufeng,Fan Xin,Huang Huimin,Yu Xiangle,Lu Fan,Shen Meixiao
Abstract
PURPOSE:
To develop a novel index that combines the locations and magnitudes of corneal alterations to improve discrimination of eyes with subclinical keratoconus from normal eyes.
METHODS:
A Scheimpflug-based tomography system was used to image 252 eyes (normal: 78 eyes, subclinical keratoconus: 71 eyes, and keratoconus: 103 eyes) of 252 patients from two clinical centers. Coordinates and magnitudes of the maximum corneal protrusion alterations were extracted from curvature, elevation, and pachymetry maps. A location consistency index (LCI) was calculated from the Euclidean distances among these locations. A logistic regression model, named the location consistency enhanced score (LCES), which combined the LCI and the magnitudes of these maximum alterations, was trained and tested in two different datasets.
RESULTS:
The LCI in eyes with subclinical keratoconus was 7.8 ± 2.6 µm, which was significantly different from that in normal eyes (11.8 ± 3.9 µm) and eyes with keratoconus (5.8 ± 2.4 µm) (all
P
< .001). The LCI could differentiate eyes with subclinical keratoconus from normal eyes with a sensitivity of 67.6%, specificity of 83.3%, and area under the receiver operating characteristic curve (AUC) of 0.81. Combining the magnitudes of these maximum alterations with the LCI for the LCES yielded a sensitivity of 90.0% and a specificity of 74.4% for differentiating eyes with subclinical keratoconus from normal eyes (AUC: 0.91).
CONCLUSIONS:
The LCI can assist in differentiating eyes with subclinical keratoconus from normal eyes. The LCES is a potential new index to assist in a confirmatory test of eyes with subclinical keratoconus.
[
J Refract Surg
. 2022;38(1):35–42.]
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献