Conceptual Framework for Utilizing Chatbots as Domain Experts in Organizations

Author:

Škarabot Mihael,Leskovar Robert

Abstract

This paper articulates conceptual framework for investigating the deployment of Large Language Models (LLMs) in the capacity of expert-level chatbot interfaces within organizational settings. Commencing with an exhaustive review of the pertinent literature, this study delineates the landscape of LLM application in corporate environments. The challenges encompass the heterogeneity of human-LLM interactions, the propensity for inadvertent errors, and the consequential effects on employee engagement and motivation. Foremost among these is the examination of the intricacies involved in the symbiosis of LLMs with extant business information systems, particularly evaluating the utility of LLMs as dynamic, bi-directional communicative interfaces. Moreover, the study anticipates the prospective impacts that LLMs may exert on prevailing human-machine interfaces within such information systems. Conclusively, this paper introduces high-level theoretical model for the integration of LLM-driven chatbots into business information systems, setting a platform for future investigations. This model is advancing the understanding of the transformative role of LLMs in augmenting and refining organizational information processing and decision-making paradigms.

Publisher

University of Maribor Press

Reference14 articles.

1. Artificial Hallucinations in ChatGPT: Implications in Scientific Writing;Alkaissi;Cureus 2023 e35179 15(2),2023

2. ChatGPT - Wikipedia (n.d.). Retrieved January 1, 2024, from https://en.wikipedia.org/wiki/ChatGPT.

3. Doo, F., Kulkarni, P., Siegel, E., Toland, M., Yi, P., Carlos, R., Parekh, V. (2023). Economic and environmental costs of cloud for medical imaging and radiology artificial intelligence. Journal of the American College of Radiology 2023, month 12.

4. Eloundou, T., Manning, S., Mishkin, P., Rock, D. (2023). GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models. arXiv preprint arXiv:2303.10130 2023.

5. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration;Fui-Hoon Nah;Journal of Information Technology Case and Application Research 2023 277-304 25(3),2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3