Combined AI Capabilities for Enhancing Maritime Safety in a Common Information Sharing Environment

Author:

Paladin Zdravko,Kapidani Nexhat,Lukšić Žarko,Mihailović Andrej,Scrima Piero,Jacobé de Naurois Charlotte,Laudy Claire,Rizogiannis Constantinos,Astyakopoulos Alkiviadis,Blum Alexis

Abstract

The complexity of maritime traffic operations indicates an unprecedented necessity for joint introduction and exploitation of artificial intelligence (AI) technologies, that take advantage of the vast amount of vessels’ data, offered by disparate surveillance systems to face challenges at sea. This paper reviews the recent Big Data and AI technology implementations for enhancing the maritime safety level in the common information sharing environment (CISE) of the maritime agencies, including vessel behavior and anomaly monitoring, and ship collision risk assessment. Specifically, the trajectory fusion implemented with InSyTo module for soft information fusion and management toolbox, and the Early Notification module for Vessel Collision are presented within EFFECTOR Project. The focus is to elaborate technical architecture features of these modules and combined AI capabilities for achieving the desired interoperability and complementarity between maritime systems, aiming to provide better decision support and proper information to be distributed among CISE maritime safety stakeholders.

Publisher

University of Maribor Press

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Maritime Cybersecurity through Operational Technology Sensor Data Fusion: A Comprehensive Survey and Analysis;Sensors;2024-05-27

2. Blockchain Technology’s Effects on Big Data in Maritime Transportation;2024 28th International Conference on Information Technology (IT);2024-02-21

3. Towards the Introduction of the Sea Traffic Management System in the Adriatic Sea;2023 12th Mediterranean Conference on Embedded Computing (MECO);2023-06-06

4. Advanced Mission Critical Communication in Maritime Search and Rescue Actions;2023 27th International Conference on Information Technology (IT);2023-02-15

5. Applying the Big Data Technologies for Enhancing Maritime Interoperability Framework;2022 30th Telecommunications Forum (TELFOR);2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3