Energy Utilization and Conversion in Modern Biomass Conversion Technologies

Author:

Sliper Nancy Jan1

Affiliation:

1. Advanced Chemical Metallurgy, Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

This paper provides a review on the current state of biomass conversion technologies that are in use and those that could play a significant role in the future, such as those that might be linked to carbon dioxide (CO2) collection and sequestered technology. Since the transportation industry is poised to become the most important new market for large-scale efficient biomass usage, here is where most of the focus will be placed. Bio-energy contribution, now estimated at 40EJ to 55 EJ per year, is expected to expand significantly in the future. Nevertheless, the precise objective of bio-energy will be dependent on the competitiveness aspect with bio-fuels and on agriculture policy globally. For the rest of this century as least, observations suggest a range of 200–300 EJ, rendering biomass a more significant alternatives of energy supply compared to mineral oil. The need to update bio-energy practices so they are compatible with sustainable development strategies is a major concern. It is expected that within the next two to three decades, the cost of electricity generated using sophisticated conversion concepts (such as gasification and contemporary co-firing and gasification) and contemporary biomass sourced fuels (e.g., hydrogen, methanol, and ethyl alcohol from the lignocellulosic biomass) will be competitive with conventional energy sources (partly based on price development with petroleum). An even more efficient and cost-effective biofuel production system may be developed from sugarcane-centric ethanol within the tropical climates.

Publisher

Anapub Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Satellite-terrestrial Integrated Computing and Artificial Intelligence as a Means of Achieving Handover Management;2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT);2024-02-09

2. Biomass and Operational Initiatives for Sustainable Bioenergy Generation;E3S Web of Conferences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3