Image Signal Processing in the Context of Deep Learning Applications

Author:

Кhusein Ali1,Urquhart 1

Affiliation:

1. First Moscow State University, Russia.

Abstract

Deep learning accelerators are a specialized sort of hardware architecture designed to enhance the computational efficiency of computers engaged in deep neural networks (DNNs) training. The implementation of DNNs in embedded vision applications might potentially be facilitated by the integration of energy-effective accelerators of deep learning into sensors. The lack of recognition for their significant impact on accuracy is a notable oversight. In previous iterations of deep learning accelerators integrated inside sensors, a common approach was bypassing the image signal processor (ISP). This deviation from the traditional vision pipelines had a detrimental impact on the performance of machine learning models trained on data that had undergone post-ISP processing. In this study, we establish a set of energy-efficient techniques that allow ISP to maximize their advantages while also limiting the covariate shift between the target dataset (RAW images) and the training dataset (ISP-analyzed images). This approach enables the practical use of in-sensor accelerators. To clarify, our results do not minimize the relevance of in-sensor accelerators. Instead, we highlight deficiencies in the methodology used in prior research and propose methodologies that empower in-sensor accelerators to fully exploit their capabilities.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3