Affiliation:
1. USIL, Campus Fernando Belaunde Terry, La Molina Location, La Molina, Peru.
Abstract
In conventional practice, unprocessed biomass resources are transported to biorefineries where they undergo preprocessing to become feedstock before undergoing conversion into various products. The constant supply of biomass to biorefinery cannot be achieved on a just-in-time basis due to the fact that various forms of biomaterials, such as energy crops, logging residue, and agricultural residue, are harvested based on their cycle of development and optimum harvesting timeframe. Biomaterials are typically stored and subsequently transported to biorefineries on an as-needed basis. The current approach has resulted in various challenges concerning logistics, biomass degradation caused by fire and microorganisms, and irregular quality of feedstock as a result of the changing characteristics of the delivered biomass materials. This has been observed through previous encounters. The aforementioned factors have resulted in elevated feedstock expenses, reduced processing capacity, and diminished product output for biorefineries. The present study introduces a novel approach to tackle the challenges associated with conventional methods of biomass feedstock procurement, retention, and preliminary processing, as discussed earlier. This strategy comprises three fundamental elements: firstly, the conservation and preparation of biomass throughout its storage; secondly, the incorporation of all biomass components, even those typically deemed as refuse or impurities; and thirdly, the optimization of the worth of each component. The implementation of this novel methodology involves the establishment of feedstock preprocessing depots in close proximity to the sources of biomass production