A Critical Analysis of Biomedical Image Classification on Deep Learning

Author:

Lu Rose1,Pan Dawei1

Affiliation:

1. School of Automation, Tongji University, Shanghai, China, 200070

Abstract

In computer-aided diagnostic technologies, deep convolutional neural image compression classifications are a crucial method. Conventional methods rely primarily on form, colouring, or feature descriptors, and also their configurations, the majority of which would be problem-specific that has been depicted to be supplementary in image data, resulting in a framework that cannot symbolize high problem entities and has poor prototype generalization capability. Emerging Deep Learning (DL) techniques have made it possible to build an end-to-end model, which could potentially general the last detection framework from the raw clinical image dataset. DL methods, on the other hand, suffer from the high computing constraints and costs in analytical modelling and streams owing to the increased mode of accuracy of clinical images and minimal sizes of data. To effectively mitigate these concerns, we provide a techniques and paradigm for DL that blends high-level characteristics generated from a deep network with some classical features in this research. The following stages are involved in constructing the suggested model: Firstly, we supervisedly train a DL model as a coding system, and as a consequence, it could convert raw pixels of medical images into feature extraction, which possibly reflect high-level ideologies for image categorization. Secondly, using image data background information, we derive a collection of conventional characteristics. Lastly, to combine the multiple feature groups produced during the first and second phases, we develop an appropriate method based on deep neural networks. Reference medical imaging datasets are used to assess the suggested method. We get total categorization reliability of 90.1 percent and 90.2 percent, which is greater than existing effective approaches.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3