An Analysis of Artificial Intelligence Based Clinical Decision Support Systems

Author:

Matheus Schallig1,Barzani Den Vaez1

Affiliation:

1. Biomedical Engineering, University of Groningen, Groningen, Netherlands.

Abstract

The growing availability of medical data has sparked fresh interests in Computerized Clinical Decision Support Systems (CDSS), thanks to recent breakthroughs in machine and deep learning. CDSS has showed a lot of promise in terms of improving healthcare, enhancing the safety of patients and minimizing treatment costs. The application of CDSS, nonetheless, is unsafe since an insufficient or defective CDSS may possibly degrade healthcare quality and place patients at potential threat. Furthermore, the deployment of a CDSS may fail when the CDSS's output is ignored by its intended users owing to a lack of confidence, relevance, or actionability. We offer literature-based advice for the various elements of CDSS adoption, with a particular emphasis on Artificial Intelligence (AI) and Machine Learning (ML) systems: quality assurance, deployment, commissioning, acceptability tests, and selection, in this research. A critical selection process will assist in the process of identifying CDSS, which effectively suits the localized sites’ needs and preferences. Acceptance testing ensures that the chosen CDSS meets the specified standards and meets the safety criteria. The CDSS will be ready for safe clinical usage at the local site once the commissioning procedure is completed. An efficient system implementation must result in a smooth rollout of the CDSS to well-trained end-users with reasonable expectations. Furthermore, quality assurance will ensure that the CDSS's levels are maintained and that any problems are discovered and resolved quickly. We conclude this research by discussing the methodical adoption process for CDSS to assist in avoiding issues, enhance the safety of patients and increasing quality of service.

Publisher

Anapub Publications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3