An Efficient Filter and Wrapper based Selection Methods along With Random Forest and Support Vector Machines Classification Technique in Health Care System

Author:

N Keerthika1,S Nithyanandam1

Affiliation:

1. Department of Computer Science and Engineering, Ponnaiyah Ramajayam Institute of Science and Technology (PRIST) Deemed to be University, Thanjavur, India.

Abstract

Health care Management System (HMS) is a key to successful management of any health care industry. Health care management systems have so many research dimensions such as identifying disease and diagnostic, drug discovery manufacturing, Bioinformatics’ problem, personalized treatments, Patient image analysis and so on. Heart Disease Prediction (HDP) is a process of identifying heart disease in advance and recognizes patient health condition by applying techniques on patient heart related symptoms. Now a day’s the problem of identifying heart diseases is solved by machine learning techniques. In this paper we construct a heart disease prediction method using combined feature selection and classification machine learning techniques. According to the existing study the one of the main difficult in heart disease prediction system is that the available data in open sources are not properly recorded the necessary characteristics and there is some lagging in finding the useful features from the available features. The process of removing inappropriate features from an available feature set while preserving sufficient classification accuracy is known as feature selection. A methodology is proposed in this paper that consists of two phases: Phase one employs two broad categories of feature selection techniques to identify the efficient feature sets and it is given to the input of our second phase such as classification. In this work we will concentrate on filter-based method for feature selection such as Chi-square, Fast Correlation Based Filter (FCBF), Gini Index (GI), RelifeF, and wrapper-based method for feature selection such as Backward Feature Elimination (BFE), Exhaustive Feature Selection (EFS), Forward Feature Selection (FFS), and Recursive Feature Elimination (RFE). The UCI heart disease data set is used to evaluate the output in this study. Finally, the proposed system's performance is validated by various experiments setups.

Publisher

Anapub Publications

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Human-Computer Interaction,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3