A Versatile Detection of Cervical Cancer with i-WFCM and Deep Learning based RBM Classification

Author:

Haridas Soumya1,T Jayamalar2

Affiliation:

1. Department of Computer Science, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

2. Department of Information Technology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India.

Abstract

One of the most common and curable types of cancer in women is cervical cancer, a common chronic condition. Pap smear images is a common way for screening the cervical cancer. It does not present with symptoms until the disease has advanced stages, cervical cancer cannot be detected in its early stages. Because of this, accurate staging will make it easier to give the patient the right amount of treatment. In this paper proposes the Anisotropic Diffusion Filter has been used to improve the Pap smear image by removing noise and preserving the image's edges. The contrast of a Pap smear image has been enhanced using Histogram Equalization. The enhanced image has been segmented using Improved Weighted Fuzzy C-means clustering to make it easier to identify the effective features. As a result, the effective features are extracted from the segmented region and used by a Restricted Boltzmann Machine classifier based on Deep Learning to classify the cancer. The performance of the proposed cervical cancer detection system can be measured in terms of sensitivity, specificity, F-measure and accuracy. The performance measures for the proposed system can be achieves 95.3% accuracy, 88.6% specificity, 89.13% precision, 88.56% recall, and 89.7% F-measure respectively. Based on simulation results, the proposed method performs better than conventional methods such as RDVLNN, Random Forest (RF), Extreme Learning Machine (ELM), and Support Vector Machine (SVM) for detecting cervical cancer.

Publisher

Anapub Publications

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Human-Computer Interaction,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Model for Segmentation and Classification of Skin Diseases using YOLO Algorithm;2023 Fourth International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3