An Improved Image Enhancement Technique for Low Light Images Using Deep Learning Approach

Author:

Gopakumar Rajesh1,Kotegar Karunakar A2

Affiliation:

1. Department of Computer Science and Engineering. Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

2. Department of Data Science and Computer Applications. Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Abstract

Image enhancement in facial detection is a critical component of facial recognition systems. Face identification in an uncontrolled environment is affected by a multitude of difficulties such as poor light levels, low-resolution cameras, occlusions from surrounding objects, and tiny faces in distant photographs. Low signal-to-noise ratio, low brightness, and noise in low-light photographs lead to issues such as color distortion and poor visibility, which makes it challenging to identify faces. Many techniques to enhance low-light images have been developed, improving the face detection system’s accuracy. This will improve the picture at the expense of higher running costs and lower model robustness. The proposed technique, DCE-Net, uses performance-intensive deep learning and light-enhanced image properties. A non-referential deep learning technique was employed to acquire and modify the image attributes. A set of loss functions designed to perform without ground-truth images is the foundation of the deep network learning employed. Compared to the current referential methods, straightforward non-referential light estimation curve mapping minimizes the computational demand for low-light image improvement. Several experiments conducted on standard datasets demonstrated the efficacy and reduced computational requirements of the approach. The effectiveness of this method is supported by both the qualitative and quantitative outcomes. The PSNR and SSIM computation for paired images shows promising results using the proposed image enhancement technique.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3