Micro-Doppler based Human Activity Recognition using ABOA based Dual Spatial Convolution with Gated Recurrent Unit

Author:

V Joseph Michael Jerard1,Yarramsetti Sarojini2,G Vennira Selvi3,N V S Natteshan4

Affiliation:

1. School of Computer Science & Engineering, Presidency University, Bangalore, India.

2. Department of Computer Science and Business Systems, Nehru Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India.

3. School of Computer Science and Engineering and Information Science, Presidency University, Bangalore, Karnataka, India.

4. School of Computing, Kalasalingam Academy of Research and Education, Tamil Nadu, India.

Abstract

The through-wall capability, device-free detection of radar-based human activity recognition are drawing a lot of interest from both academics and industry. The majority of radar-based systems do not yet combine signal analysis and feature extraction in the frequency domain and the time domain. Applications like smart homes, assisted living, and monitoring rely on human identification and activity recognition (HIAR). Radar has a number of advantages over other sensing modalities, such as the ability to shield users' privacy and conduct contactless sensing. The article introduces a new human tracking system that uses radar and a classifier called Dual Spatial Convolution Gated Recurrent Unit (DSC-GRU) to identify the subject and their behavior. The system follows the person and identifies the type of motion whenever it detects movement. One important feature is the integration of the GRU with the DSC unit, which allows the model to simultaneously capture the spatiotemporal dependence. Present prediction models just take into account spatial features that are immediately adjacent to each other, disregarding or just superimposing global spatial features when taking spatial correlation into account. A new dependency graph is created by calculating the correlation among nodes using the correlation coefficient; this graph represents the global spatial dependence, while the classic static graph represents the neighboring spatial dependence in the DSC unit. The DSC unit goes a step further by using a modified gated mechanism to quantify the various contributions of both local and global spatial correlation. While previous models performed worse, the suggested model outperformed them with an accuracy of 99.45 percent and a precision of 97.15 percent.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3