Design of a Model Using Machine Learning and Deep Dyna Q Learning Integration for Improved Disease Prediction in Remote Healthcare

Author:

Bhagwatrao Gaikwad Rama1,Lakshmanan Ramanathan1

Affiliation:

1. School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Abstract

In the domain of proactive healthcare management, the imperative for remote health monitoring has escalated, the remote health care in this scenario specially means, the patient is seating at the remote location that is not in the hospital setting, and doctor or healthcare worker is monitoring the health parameters gathered using biomedical sensors and passed through the network. Conventional methodologies, while partially effective, encounter challenges in predictive precision, responsiveness to evolving health dynamics, and managing the vast array of patient data. These limitations underscore the demand for a sophisticated, holistic solution catering to diverse use cases. This work introduces a pioneering framework amalgamating traditional machine learning (ML) models with the advanced capabilities of Deep Dyna Q Learning process to overcome existing constraints. This framework strategically utilizes ensemble of traditional algorithms which amalgamates the strengths of these diverse models. Central to this model is the integration of Deep Dyna Q Learning, empowering the system with real-time adaptability and dynamic decision-making process through reinforcement learning principles, thereby deriving insights from historical and simulated datasets to foster more nuanced, patient-centric decisions. The impact of this comprehensive approach is profound, evidenced by preliminary results showcasing significant enhancements in the efficiency of remote health monitoring systems. Notably, the model achieves increase in precision, accuracy and recall for disease prediction. These improvements signify a paradigm shift towards proactive and efficient healthcare interventions, especially in remote settings. The fusion of traditional ML techniques with Deep Dyna Q Learning emerges as a potent solution, heralding a revolution in remote health monitoring and establishing a new benchmark for proactive healthcare delivery scenarios.

Publisher

Anapub Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3