Adaptive Approach to Anomaly Detection in Internet of Things Using Autoencoders and Dynamic Thresholds

Author:

E Nayer Tumi Figueroa1,A Vishnu Priya2,Shanmugam Selvanayaki Kolandapalayam3,V Kiran Kumar4,Sengan Sudhakar5,C Alexandra Melgarejo Bolivar1

Affiliation:

1. Universidad Nacional del Altiplano de Puno, P.O. Box 291, Puno – Peru.

2. Department of Computational Intelligence, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.

3. Department of Computer Science, Ashland University, Ashland, OH, USA.

4. Department of Computer Science, Dravidian University, Andhra Pradesh 517426, India.

5. Department of Computer Science and Engineering, PSN College of Engineering and Technology, Tirunelveli, 627451, Tamil Nadu, India.

Abstract

The Internet of Things (IoT) represents a vast network of interconnected devices, from simple sensors to intricate machines, which collect and share data across sectors like healthcare, agriculture, and home automation. This interconnectivity has brought convenience and efficiency but also introduced significant security concerns. Many IoT devices, built for specific functions, may lack robust security, making them vulnerable to cyberattacks, especially during device-to-device communications. Traditional security approaches often fall short in the vast and varied IoT landscape, underscoring the need for advanced Anomaly Detection (AD), which identifies unusual data patterns to warn against potential threats. Recently, a range of methods, from statistical to Deep Learning (DL), have been employed for AD. However, they face challenges in the unique IoT environment due to the massive volume of data, its evolving nature, and the limitations of some IoT devices. Addressing these challenges, the proposed research recommends using autoencoders with a dynamic threshold mechanism. This adaptive method continuously recalibrates, ensuring relevant and precise AD. Through extensive testing and comparisons, the study seeks to demonstrate the efficiency and adaptability of this approach in ensuring secure IoT communications.

Publisher

Anapub Publications

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Human-Computer Interaction,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3