Connecting molecular sequences to their voucher specimens

Author:

Groom Quentin JohnORCID,Dillen MathiasORCID,Huybrechts PieterORCID,Johaadien Rukaya,Kyriakopoulou Niki,Fernandez Francisco Jose Quevedo,Trekels MaartenORCID,Wong Wai Yee

Abstract

When sequencing molecules from an organism it is standard practice to create voucher specimens. This ensures that the results are repeatable and that the identification of the organism can be verified. It also means that the sequence data can be linked to a whole host of other data related to the specimen, including traits, other sequences, environmental data, and geography. It is therefore critical that explicit, preferably machine readable, links exist between voucher specimens and sequence. However, such links do not exist in the databases of the International Nucleotide Sequence Database Collaboration (INSDC). If it were possible to create permanent bidirectional links between specimens and sequence it would not only make data more findable, but would also open new avenues for research. In the Biohackathon we built a semi-automated workflow to take specimen data from the Meise Herbarium and search for references to those specimens in the European Nucleotide Archive (ENA). We achieved this by matching data elements of the specimen and sequence together and by adding a “human-in-the-loop” process whereby possible matches could be confirmed. Although we found that it was possible to discover and match sequences to their vouchers in our collection, we encountered many problems of data standardization, missing data and errors. These problems make the process unreliable and unsuitable to rediscover all the possible links that exist. Ultimately, improved standards and training would remove the need for retrospective relinking of specimens with their sequence. Therefore, we make some tentative recommendations for how this could be achieved in the future.

Publisher

Center for Open Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3