Photons without borders: quantifying light pollution transfer between territories

Author:

Bará Salvador,Lima Raul C.

Abstract

The light pollution levels experienced at any given site generally depend on a wide number of artificial light sources distributed throughout the surrounding territory. Since photons can travel long distances before being scattered by the atmosphere, any effective proposal for reducing local light pollution levels needs an accurate assessment of the relative weight of all intervening light sources, including those located tens or even hundreds of km away. In this paper we describe several ways of quantifying and visualizing these relative weights. Particular emphasis is made on the aggregate contribution of the municipalities, which are -in many regions of the world- the administrative bodies primarily responsible for the planning and maintenance of public outdoor lighting systems

Publisher

International Journal of Sustainable Lighting

Subject

General Engineering,Energy Engineering and Power Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial light at night: a global disruptor of the night-time environment;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-10-30

2. Study of Light Pollution Risk Measurement Based on GIS And EWM-AHP;Highlights in Science, Engineering and Technology;2023-07-15

3. Modeling the artificial night sky brightness at short distances from streetlights;Journal of Quantitative Spectroscopy and Radiative Transfer;2023-02

4. Controlling the artificial radiance of the night sky: The Añora urban laboratory;Journal of Quantitative Spectroscopy and Radiative Transfer;2023-02

5. Estimating linear radiance indicators from the zenith night-sky brightness: on the Posch ratio for natural and light-polluted skies;Monthly Notices of the Royal Astronomical Society;2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3