Classification of Multi-temporal Images using Machine Learning

Author:

Pabla Simranjit Singh,Mandla Mandeep Singh,Narendra Hardik,Patel Swasti

Abstract

In past, there has been a lot of research related to the image-based technique in remote sensing from which object-based classification is giving great results among all the techniques. This paper presents a new approach where we have mixed both OBIA (Object-Based Image Analysis) & supervised classification. And with this novel approach, our team aims to do classification as well as analysis for the change detection over time. The data used in this study is high-resolution Multispectral 4-band images from 2017 to 2019 (i.e. 3.0 m) provided by the PlanetScope satellite of region Chandigarh, India. Here the data has been pre-processed through passing it in a pipeline of steps and used a Multi-resolution segmentation algorithm and classify the 7 classes through supervised learning using 3 algorithms Maximum Likelihood (ML), Support Vector Machine (SVM), Mahalanobis Distance (MD). And out of the three, SVM and ML has given the highest Overall Accuracy of 95.21% & Kappa Coefficient = 0.9159 and Overall Accuracy 91.91% & Kappa Coefficient = 0.8860. Altogether; this is a highly effective approach for classification and detecting the change in Urban area or Rural area or forest area than simply using OBIA or pixel-based approach.

Publisher

California Digital Library (CDL)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3