The land ice contribution to sea level during the satellite era

Author:

Bamber JonathanORCID,Westaway RichardORCID,Marzeion Ben,Wouters Bert

Abstract

Since 1992, there has been a revolution in our ability to quantify the land ice contribution to SLR using a variety of satellite missions and technologies. Each mission has provided unique, but sometimes conflicting, insights into the mass trends of land ice. Over the last decade, over fifty estimates of land ice trends have been published, providing a confusing and often inconsistent picture. The IPCC Fifth Assessment Report (AR5) attempted to synthesise estimates published up to early 2013. Since then, considerable advances have been made in understanding the origin of the inconsistencies, reducing uncertainties in estimates and extending time series. We assess and synthesise results published, primarily, since the AR5, to produce a consistent estimate of land ice mass trends during the satellite era (1992 to 2016). We combine observations from multiple missions and approaches including sea level budget analyses. Our resulting synthesis is both consistent and rigorous, drawing on i) the published literature, ii) expert assessment of that literature, and iii) a new analysis of Arctic glacier and ice cap trends combined with statistical modelling. We present annual and pentad (five-year mean) time series for the East, West Antarctic and Greenland Ice Sheets and glaciers separately and combined. When averaged over pentads, covering the entire period considered, we obtain a monotonic trend in mass contribution to the oceans, increasing from 0.31±0.35 mm of sea level equivalent for 1992-1996 to 1.85±0.13 for 2012-2016. Our integrated land ice trend is lower than many estimates of GRACE-derived ocean mass change for the same periods. This is due, in part, to a smaller estimate for glacier and ice cap mass trends compared to previous assessments. We discuss this, and other likely reasons, for the difference between GRACE ocean mass and land ice trends.

Publisher

California Digital Library (CDL)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3