Binary PSO Variants for Feature Selection in Handwritten Signature Authentication

Author:

Hancer EmrahORCID,Bardamova Marina,Hodashinsky Ilya,Sarin Konstantin,Slezkin Artem,Svetlakov Mikhail

Abstract

In this paper we propose modifications of the well-known algorithm of particle swarm optimization (PSO). These changes affect the mapping of the motion of particles from continuous space to binary space for searching in it, which is widely used to solve the problem of feature selection. The modified binary PSO variations were tested on the dataset SVC2004 dedicated to the problem of user authentication based on dynamic features of a handwritten signature. In the example of k-nearest neighbours (kNN), experiments were carried out to find the optimal subset of features. The search for the subset was considered as a multicriteria optimization problem, taking into account the accuracy of the model and the number of features.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Information Systems,General Medicine

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Efficient Model for IoT Security Using Adopted RSA;Proceedings of the Third International Conference on Information Management and Machine Intelligence;2022-08-04

2. Construction of Fuzzy Classifiers by a Brain Storm Optimization Algorithm;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3