Numerical Simulation of the Performance Characteristics of the Hybrid Closed Circuit Cooling Tower

Author:

Sarker M. M. A.,Kim E.,Moon G. C.,Yoon J. I.

Abstract

The performance characteristics of the Hybrid Closed Circuit Cooling Tower (HCCCT) have been investigated applying computational fluid dynamics (CFD). Widely reported CFD techniques are applied to simulate the air-water two phase flow inside the HCCCT. The pressure drop and the cooling capacity were investigated from several perspectives. Three different transverse pitches were tested and found that a pitch of 45 mm had lower pressure drop. The CFD simulation indicated that when air is supplied from the side wall of the HCCCT, the pressure drop can be over predicted and the cooling capacity can be under predicted mainly due to the non-uniform air flow distribution across the coil bank. The cooling capacity in wet mode have been calculated with respect to wet-bulb temperature (WBT) and cooling water to air mass flow rates for different spray water volume flow rates and the results were compared to the experimental measurement and found to conform well for the air supply from the bottom end. The differences of the cooling capacity and pressure drop in between the CFD simulation and experimental measurement in hybrid mode were less than 5 % and 7 % respectively for the uniform air flow distribution.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determination of Heat and Mass Emission Coefficients in a Hybrid Cooling Tower with Transversely Finned Radiator Pipes;Journal of Engineering Physics and Thermophysics;2024-07

2. CALCULATION OF CLOSED WET COOLING TOWERS USING MODIFIED Ε-NTU APPROACHES;Energy Technologies & Resource Saving;2024-03-20

3. Impact of water coolant flow on thermal characteristics of hybrid cooling tower;2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2023-03-16

4. Theoretical Investigation on Thermal Performance of New Structure Closed Wet Cooling Tower;Heat Transfer Engineering;2017-06-29

5. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran;Heat and Mass Transfer;2016-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3