Author:
Akritas A. G.,Strzebonski A. W.,Vigklas P. S.
Abstract
In this paper we compare four implementations of the Vincent-AkritasStrzebo´nski Continued Fractions (VAS-CF) real root isolation method using four different (two linear and two quadratic complexity) bounds on the values of the positive roots of polynomials. The quadratic complexity bounds were included to see if the quality of their estimates compensates for their quadratic complexity. Indeed, experimentation on various classes of special and random polynomials revealed that the VAS-CF implementation using LMQ, the Quadratic complexity variant of our Local Max bound, achieved an overall average speed-up of 40 % over the original implementation using Cauchy’s linear bound.
Subject
Applied Mathematics,Analysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献