Author:
Zhang Zhongcai,Wu Yuqiang
Abstract
This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment.
Subject
Applied Mathematics,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献