Author:
Čiegis Raimondas,Bugajev Andrej
Abstract
This paper presents finite difference approximations of one dimensional in space mathematical model of a bacterial self-organization. The dynamics of such nonlinear systems can lead to formation of complicated solution patterns. In this paper we show that this chemotaxisdriven instability can be connected to the ill-posed problem defined by the backward in time diffusion process. The method of lines is used to construct robust numerical approximations. At the first step we approximate spatial derivatives in the PDE by applying approximations targeted for special physical processes described by differential equations. The obtained system of ODE is split into a system describing separately fast and slow physical processes and different implicit and explicit numerical solvers are constructed for each subproblem. Results of numerical experiments are presented and convergence of finite difference schemes is investigated.
Subject
Applied Mathematics,Analysis
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献