Advancing Research Reproducibility in Machine Learning through Blockchain Technology

Author:

Filatovas Ernestas,Stripinis Linas,Orts Francisco,Paulavičius Remigijus

Abstract

Like other disciplines, machine learning is currently facing a reproducibility crisis that hinders the advancement of scientific research. Researchers face difficulties reproducing key results due to the lack of critical details, including the disconnection between publications and associated models, data, parameter settings, and experimental results. To promote transparency and trust in research, solutions that improve the accessibility of models and data, facilitate experiment tracking, and allow audit of experimental results are needed. Blockchain technology, characterized by its decentralization, data immutability, cryptographic hash functions, consensus algorithms, robust security measures, access control mechanisms, and innovative smart contracts, offers a compelling pathway for the development of such solutions. To address the reproducibility challenges in machine learning, we present a novel concept of a blockchain-based platform that operates on a peer-to-peer network. This network comprises organizations and researchers actively engaged in machine learning research, seamlessly integrating various machine learning research and development frameworks. To validate the viability of our proposed concept, we implemented a blockchain network using the Hyperledger Fabric infrastructure and conducted experimental simulations in several scenarios to thoroughly evaluate its effectiveness. By fostering transparency and facilitating collaboration, our proposed platform has the potential to significantly improve reproducible research in machine learning and can be adapted to other domains within artificial intelligence.

Publisher

Vilnius University Press

Reference63 articles.

1. Improving the Efficiency and Reliability of Digital Time-Stamping

2. A survey on blockchain interoperability: past, present, and future trends;ACM Computing Surveys (CSUR),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3