A General Framework for Providing Interval Representations of Pareto Optimal Outcomes for Large-Scale Bi- and Tri-Criteria MIP Problems

Author:

Filcek Grzegorz,Miroforidis Janusz

Abstract

The Multi-Objective Mixed-Integer Programming (MOMIP) problem is one of the most challenging. To derive its Pareto optimal solutions one can use the well-known Chebyshev scalarization and Mixed-Integer Programming (MIP) solvers. However, for a large-scale instance of the MOMIP problem, its scalarization may not be solved to optimality, even by state-of-the-art optimization packages, within the time limit imposed on optimization. If a MIP solver cannot derive the optimal solution within the assumed time limit, it provides the optimality gap, which gauges the quality of the approximate solution. However, for the MOMIP case, no information is provided on the lower and upper bounds of the components of the Pareto optimal outcome. For the MOMIP problem with two and three objective functions, an algorithm is proposed to provide the so-called interval representation of the Pareto optimal outcome designated by the weighting vector when there is a time limit on solving the Chebyshev scalarization. Such interval representations can be used to navigate on the Pareto front. The results of several numerical experiments on selected large-scale instances of the multi-objective multidimensional 0–1 knapsack problem illustrate the proposed approach. The limitations and possible enhancements of the proposed method are also discussed.

Publisher

Vilnius University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3