Author:
Amali Paul Rose Gregory,Suvinthra Murugan,Balachandran Krishnan
Abstract
The Kuramoto–Sivashinsky equation is a nonlinear parabolic partial differential equation, which describes the instability and turbulence of waves in chemical reactions and laminar flames. The aim of this work is to prove the large deviation principle for the stochastic Kuramoto–Sivashinsky equation driven by multiplicative noise. To establish the large deviation principle, the weak convergence approach is used, which relies on proving basic qualitative properties of controlled versions of the original stochastic partial differential equation.
Subject
Applied Mathematics,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献