A hybrid of Bayesian-based global search with Hooke–Jeeves local refinement for multi-objective optimization problems

Author:

Litvinas LinasORCID

Abstract

The proposed multi-objective optimization algorithm hybridizes random global search with a local refinement algorithm. The global search algorithm mimics the Bayesian multi-objective optimization algorithm. The site of current computation of the objective functions by the proposed algorithm is selected by randomized simulation of the bi-objective selection by the Bayesian-based algorithm. The advantage of the new algorithm is that it avoids the inner complexity of Bayesian algorithms. A version of the Hooke–Jeeves algorithm is adapted for the local refinement of the approximation of the Pareto front. The developed hybrid algorithm is tested under conditions previously applied to test other Bayesian algorithms so that performance could be compared. Other experiments were performed to assess the efficiency of the proposed algorithm under conditions where the previous versions of Bayesian algorithms were not appropriate because of the number of objectives and/or dimensionality of the decision space.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3