Effects of Joule heating, thermal radiation on MHD pulsating flow of a couple stress hybrid nanofluid in a permeable channel

Author:

Rajamani Somasundaram,Subramanyam Reddy AnalaORCID

Abstract

The current work deals with the pulsatile hydromagnetic flow of blood-based couple stress hybrid nanofluid in a porous channel. For hybrid nanofluid, the fusion of gold (Au) and copper oxide (CuO) nanoparticles are suspended to the blood (base fluid). In this model, the employment of viscous dissipation, radiative heat, and Ohmic heating is incorporated. The governing flow equations (set of partial differential equations) are modernized to set of ordinary differential equations by using the perturbation technique. The nondimensional governing equations are solved by adopting the shooting procedure with the help of the Runge–Kutta fourth-order approach. Temperature distributions of hybrid nanofluid and conventional mono nanofluids are portrayed via pictorial results to claim that the hybrid nanofluid has better temperature distribution than mono nanofluids. Temperature is raising for the magnifying viscous dissipation, whereas the reverse behavior can be found with a rise in couple stress parameter. The heat transfer rate is getting high for the higher values of the Eckert number, and the same behavior is noticed with the uplifting magnetic field.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3