Electroencephalogram spike detection and classification by diagnosis with convolutional neural network

Author:

Misiukas Misiūnas Andrius VytautasORCID,Rapševičius Valdas,Samaitienė RūtaORCID,Meškauskas Tadas

Abstract

This work presents convolutional neural network (CNN) based methodology for electroencephalogram (EEG) classification by diagnosis: benign childhood epilepsy with centrotemporal spikes (rolandic epilepsy) (Group I) and structural focal epilepsy (Group II). Manual classification of these groups is sometimes difficult, especially, when no clinical record is available, thus presenting a need for an algorithm for automatic classification. The presented algorithm has the following steps: (i) EEG spike detection by morphological filter based algorithm; (ii) classification of EEG spikes using preprocessed EEG signal data from all channels in the vicinity of the spike detected; (iii) majority rule classifier application to all EEG spikes from a single patient. Classification based on majority rule allows us to achieve 80% average accuracy (despite the fact that from a single spike one would obtain only 58% accuracy). 

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3