Author:
Manickam Iswarya,Ramachandran Raja,Rajchakit Grienggrai,Cao Jinde,Huang Chuangxia
Abstract
This paper concerns the issues of exponential stability in Lagrange sense for a class of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with mixed time delays and Markovian jumping is provided by applying the association of Lyapunov method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some examples with numerical simulations are given to demonstrate the effectiveness of the acquired result.
Subject
Applied Mathematics,Analysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献