Abstract
In this manuscript, we generalize, improve, and enrich recent results established by Budhia et al. [L. Budhia, H. Aydi, A.H. Ansari, D. Gopal, Some new fixed point results in rectangular metric spaces with application to fractional-order functional differential equations, Nonlinear Anal. Model. Control, 25(4):580–597, 2020]. This paper aims to provide much simpler and shorter proofs of some results in rectangular metric spaces. According to one of our recent lemmas, we show that the given contractive condition yields Cauchyness of the corresponding Picard sequence. The obtained results improve well-known comparable results in the literature. Using our new approach, we prove that a Picard sequence is Cauchy in the framework of rectangular metric spaces. Our obtained results complement and enrich several methods in the existing state-ofart. Endorsing the materiality of the presented results, we also propound an application to dynamic programming associated with the multistage process.
Subject
Applied Mathematics,Analysis
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献