Speech emotion classification using fractal dimension-based features

Author:

Tamulevičius Gintautas,Karbauskaitė Rasa,Dzemyda Gintautas

Abstract

During the last 10–20 years, a great deal of new ideas have been proposed to improve the accuracy of speech emotion recognition: e.g., effective feature sets, complex classification schemes, and multi-modal data acquisition. Nevertheless, speech emotion recognition is still the task in limited success. Considering the nonlinear and fluctuating nature of the emotional speech, in this paper, we present fractal dimension-based features for speech emotion classification. We employed Katz, Castiglioni, Higuchi, and Hurst exponent-based features and their statistical functionals to establish the 224-dimensional full feature set. The dimension was downsized by applying the Sequential Forward Selection technique. The results of experimental study show a clear superiority of fractal dimension-based feature sets against the acoustic ones. The average accuracy of 96.5% was obtained using the reduced feature sets. The feature selection enabled us to obtain the 4-dimensional and 8-dimensional sets for Lithuanian and German emotions, respectively.

Publisher

Vilnius University Press

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3