Author:
Wu Guo-Cheng,Abdeljawad Thabet,Liu Jinliang,Baleanu Dumitru,Wu Kai-Teng
Abstract
A class of semilinear fractional difference equations is introduced in this paper. The fixed point theorem is adopted to find stability conditions for fractional difference equations. The complete solution space is constructed and the contraction mapping is established by use of new equivalent sum equations in form of a discrete Mittag-Leffler function of two parameters. As one of the application, finite-time stability is discussed and compared. Attractivity of fractional difference equations is proved, and Mittag-Leffler stability conditions are provided. Finally, the stability results are applied to fractional discrete-time neural networks with and without delay, which show the fixed point technique’s efficiency and convenience.
Subject
Applied Mathematics,Analysis
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献